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Abstract: This paper reports results of soliton dynamics investigated by solving the inhomogeneous Schrödinger 

equation (INLSE), which involves terms describing defects mostly encountered in optical systems. Solutions to the 

INLSE yield breather and rogue solitons arising initially from smooth pulses, for which their evolution is explored by 

analysing the parameter space and applying external perturbation that is quasiperiodic in nature. We demonstrate that 

the solitons can be controlled by proper adjustment to both the inhomogeneity parameter and frequency of the 

externally applied signal, for which rogue and localised breather waves could be generated. Further, we argue that the 

resulting solitons stand robust against the uniformly distributed noise seeded into the system. The findings help reveal 

factors that impact the dynamics of such solitons and tailoring them for potential photonic applications. 
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Introduction: Soliton and breather waves have 

increasingly become the subject matter of oriented 

research activities in diverse systems and one such 

system is a nonlinear optical medium
1
. Fundamental 

solutions of the nonlinear wave equation such as the 

nonlinear Schrödinger equation (NLSE), establish 

for the soliton and breather generation in systems 

like these
2
. The optical solitons, on one hand, have 

potential importance in the growing field of 

information and telecommunication technology 

owing to their ability to propagate long distances 

without abating. On the other hand, controlling and 

investigating factors affecting the dynamics of these 

optical solitons is of immense significance to 

properly tailor their properties for practical 

applications. In one dimension, the NLSE is 

essentially integrable and yields soliton solutions
3
, 

and it has been receiving elaborate investigation 

with regards to constraints and conditions that 

would make the soliton wave controlled and 

robustly stand out for utilisation in optical 

transmission
4
. The (2D + 1) NLSE has recently been 

employed to understand and model the characteristic 

dynamics of directional localised waves
5
, which are 

commonly encountered in oceanography and 

simulate the occurrence of breather beams. The 

results help explore solitons in (2D + 1) manifold 

with the formation of large-amplitude rogue waves 

having specifically finite crest length in nonlinear 

dispersive media systems like the Bose-Einstein 

condensates, superfluids, space plasma and 

photonics. 

The issue of controlling and stabilising soliton 

waves has been the focus of research articles in the 

field during the last few years. Inc et al have 

analytically reported solutions of optical solitons by 

examining the resonant nonlinear Schrödinger 

equation (R-NLSE) which describes the generation 

and propagation of soliton waves in optical fibres by 
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adopting a sine -Gordon algorithm, which proved to 

be an efficient integration scheme
6
. They introduced 

three types of nonlinear terms ascribed to the optical 

fibres and accordingly derived solutions depending 

on specific constraints, naturally imposed on the 

system under investigation that preserved the 

existence of bright, dark, and bright-dark solitons. 

The importance of sine-Gordon model to approach a 

condensed state system such as the extended 1D 

(long) Josephson junctions (LJJ) has been addressed 

in a plethora of publications. Most importantly, the 

evolution of fluxon soliton waves under weak 

perturbation has been investigated and explored in 

terms of the structural potential ascribed to the 

system, with emphasis on symmetry properties and 

dispersion, which remarkably contributed as control 

parameters to preserving the temporal evolution of 

magnetic solitons
7,8,9

. Recent research
10

 has 

demonstrated the feasibility of boosting the 

performance of microresonators, which work as 

convertors of laser light into ultrashort pulses 

(dissipative Kerr solitons) propagating around the 

circumference of the resonator. This has been 

achieved by creating the so-called perfect soliton 

crystals PSCs. The soliton pulse train repetition is 

governed by the size of the microresonator, and the 

smaller the size the higher the repetition rate which 

may reach the terahertz frequency domain. This is of 

course promising for enhancing the performance of 

defect-free optical communication links by 

increasing the speed and precision of signals. The 

size of the microprocessor is limited to a few tens of 

microns, however the researchers successfully 

managed to maximise the number of dissipative 

Kerr solitons equally spaced inside the 

microresonator as much as they could. By doing so 

they were able of generating the PSC, boosting 

interferometry and coherent multiplication of power 

and repetition rate of the produced pulse train, and 

the dynamics of the PSC formation were 

accordingly investigated.  

In addition, the inhomogeneity of NLSE i.e., when 

defects are existing in the system, has been 

receiving increasing interest to obtain a conclusive 

view on how solitons evolve and how they are 

influenced under imposed specific constraints. 

Embarking on 1-fold Darboux transformation, 

Young-Sheng et al studied the inhomogeneous 

Schrödinger equation (INLSE) and explicitly 

reported analytical first-order solutions that involved 

deformed breather and rogue waves
11

. Their 

findings demonstrated that the defect 

(inhomogeneity) has a critical impact on the soliton 

wave reflected in a change in the height and 

background of the generated solitons. Furthermore, 

it could be possible to control the rogue wave 

characteristics by properly adjusting a specific 

physical parameter such as the inhomogeneity 

parameter and reducing the resulting rogue soliton 

wave to the corresponding NLSE one under certain 

conditions set on other parameters. Therefore, it 

seems reasonably quite significant to further explore 

and analyse the parameter space influencing the 

evolution of solitons and their localisation 

characteristics in inhomogeneous Schrödinger 

equation due to their paramount importance in 

several applications and particularly in photonics.  

Governing inhomogeneous Schrödinger equation 

Nonlinear Schrodinger equation (NLSE) 
In a general form, the nonlinear Schrödinger 

equation can be expressed by 

         | |
                                                (1) 

where u(x,t)  is  the dependent variable, ut and ux 

denote partial derivatives to time and space 

respectively. As can be noticed u is complex-valued 

in this case contrary to the sine-Gordon or 

Korteweg- de Vries (KdV) equations
12

. For optical 

systems t and x are exchanged in equation (1) (utt 

and ux are considered then), which in this case has 

one solution that owns resemblance to Peregrine 

soliton when applied to fibre optics as follows
13
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Lnl is a nonlinear length with P0 is the power of the 

continuous background, and T0 is a time duration 

given by T0 = (Lnl)
1/2

. This optical soliton given by 
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solution (2) is shown in Fig. 1 and is reminiscent of 

a rogue wave. 

 Inhomogeneous NLSE 

In order to account for defects in a realistic physical 

medium, additional explicit terms ought to be 

included into Equation (1) that becomes 

inhomogeneous and thus has the form [6] 

         | |
                           (3) 

where a is a real nonuniformity number representing 

the system inhomogeneity and conspicuously when 

it is zero Equation (3) reduces to the normal NLSE 

Equation (2). The significance of Equation (3) is 

that it allows modelling breather waves and their 

evolution in systems with embedded nonuniformity. 

In this context, experimental findings indicate to the 

pivotal role played by system defects in generating 

and influencing optical rogue waves and the 

necessity to working out a control mechanism over 

these waves
11,14

. Although solutions and parametric 

control on shape and amplitude of soliton waves of a 

INLSE have been proposed
11

, there is no compelling 

evidence existing yet on how the shape and 

background of the produced soliton would be 

accounted for when there exists an external 

perturbation or noise is in play as well. This may 

also have relevance to signal instabilities and optical 

chaos in a nonlinear system for which solitons are 

generated for telecommunication purposes, and it is 

significant to explore how their dynamics are 

affected. Driven by these findings, the objective of 

this paper is to address and simulate this problem 

setting out from solutions to Equation (3) and show 

accordingly the evolving wave instability trends, 

taking into consideration externally applied signals 

to explore the soliton dynamics, and hence show 

how robust they would stand against perturbations 

set within the system. 

Numerical modelling and results 

Solitons in NLSE, a = 0 

Solutions to the normal NLSE have been obtained 

using the COMSOL Multiphysics modelling 

platform to solve the PDE Equation (1), considering 

one-dimensional domain in the range [-l0, l0] to 

construct the computation mesh. Imposing a 

continuous periodic condition, the initial values 

were as follows 

 (   )     
(    

 
 
)
 

  (   )             (4) 

where  (   ) accounts for an initial Gaussian wave 

at t = 0 which was used to solve for subsequent time 

intervals by adopting a 0.01s time step. The 

Dirichlet boundary condition was  (   )|    

    . Fig. 2(a) shows snapshots of the produced 

soliton at selected times for u0 = 6 on the [-10:10] 

domain. As can be seen in Fig. 2(a), the wave 

evolves temporally, and it progressively exhibits 

changes in direction resulting in localised bright and 

dark solitons clearly seen in Fig. 2(b) and its XY 

projection 2(c) with manifestly rippling background. 

Solitons in INLSE, a = 0.012 (Rogue wave) 

Equation (3) which includes inhomogeneity terms 

has been numerically solved for a = 0.012 taking 

the same initial conditions (4). Fig. 3 shows 

progression of a rogue wave in a sequence from left 

to right computed for the first 4 seconds. As can be 

seen, the background is nearly flat at beginning and 

producing a relatively small amplitude wave, then it 

gets higher in intensity over the course of time 

exhibiting distinctly weak wave packet background, 

as demonstrated in Figs. 3 (a-d). In order to check 

the robustness of the resulting rogue wave, solutions 

were obtained by considering uniformly distributed 

noise with random seed and zero mean, also 

increasing the noise amplitude from 1 to 2 and 7 as 

can be seen in Figs. 4 (a-c) respectively. As 

observed, the rogue wave stands eminent in (a) and 

(b) but gets obfuscated once the noise amplitude has 

marginally increased in (c). Furthermore, the rippled 

background already observed in Fig. (3) becomes 

noisy and gains higher amplitude that is mostly 

manifested in (c). 

Solitons in INLSE under perturbation 

In this section solutions of the INLSE are obtained 

for a = 0.012 as well but taking external 

perturbation into account. The equation of concern 

thus can be expressed as 

         | |
              ( )        (4) 
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where  ( )  is the applied time-varying signal 

accounting for perturbation terms and is given by 

 ( )     (   )     (   )         (5) 

for which           and      are taken as the 

frequencies of the quasiperiodic signal. Solution of 

Equation (4) is depicted in Fig. 5, which remarkably 

demonstrates the generation of two solitons 

emanating from the evolution of one soliton wave as 

seen in (5a). This is also demonstrated in Fig. (5b) 

which shows 2-dimensional top view plot of the 

evolving waves. One significant observation one can 

make here is that the resulting two solitons are 

generated with manifestly large amplitude too. 

However, if the initial condition is represented as a 

Gaussian pulse wave of the form  (   )  

( √  ⁄ )     ( (    )
  )⁄  applied at location 

    , then solving Equation (4) for applied bi-

harmonic signal  ( ) , will result in a solution 

showing a single localised soliton wave as shown in 

Fig. 6 (a-b). In addition, the effect of changing the 

frequency of the perturbation  ( )  can be clearly 

observed in Fig. 7(a-b) which is acquired for lower 

frequency component        . The soliton 

interaction with the external signal is further 

exemplified by the background waves getting 

stronger and this is very well demonstrated on the 

2D projected plot (7b). This phenomenon becomes 

more interesting when changing the frequency 

values that are used to generate Fig. (8) for which 

   and    are 1.618033988 (the golden number) 

and 1, respectively. The main soliton gets less 

prominent as the interaction with the applied 

perturbation further intensifies as clearly shown in 

both (a) and (b). As a further exploration of how the 

inhomogeneity parameter a controls the resulting 

soliton wave evolution, we solve Equation (4) for a 

= 0.03 with f(t) having          and        . 

Fig. (9) demonstrates a remarkable wave trend for 

which eminent breather solitons develop as depicted 

in (a) and (b).  

Discussion: The data presented earlier show that 

changing the inhomogeneity parameter from 0 to 

0.012 results in a solution of the INLSE that 

produces a rogue wave while evolving. Also, up to a 

certain threshold of noise amplitude that is equal to 

7, this wave is found to stand eminent in the 

presence of uniformly distributed noise. The 

interaction of the solitons with the external 

quasiperiodic field shows that the resulting wave 

trend depends mostly on the frequency of the 

applied perturbation. To a certain point, this 

interaction is also manifested in competition 

between the generated soliton and its background, 

depending on the quasi-periodicity of the field, 

which dictates the stability of the interacting 

solitons. Nonlinear stability of solitons against 

external perturbations was reported earlier in 

homogeneous NLSE
15

. The researchers found that 

larger amplitude solitons develop instability earlier 

than weaker amplitude ones, and this occurs for the 

same relative perturbation in play. 

In addition, setting frequencies that are equal to the 

golden mean has impacted the wave pattern, 

enhanced the disorder, and resulted in less 

prominent solitons with the onset of deformation 

building in the main wave, as one may recognise in 

Fig. 7 and Fig 8. This scenario may be advocated if 

one considers here that both frequencies associated 

with the applied signal are incommensurate in 

nature and have a fixed value. This is of outstanding 

importance in dynamical systems especially when 

their ratio   /   is an irrational number, since it my 

give rise to erratic behaviour and open the route to 

chaos
16,17,18

, where in the presence of asymmetries 

and frequency incommensurability, massive phase 

fluctuations may occur. We stress that the soliton 

wave trend is crucially dependent on other system 

parameters too, such as the amplitude of the 

perturbation signal and inhomogeneity parameter, 

which dictate the overall spatiotemporal evolution 

of the rising soliton as observed. Driven by a phase-

modulated excitation, the dynamics of cavity 

solitons (CS) has been investigated in a Kerr 

mediated passive optical fibre resonator
19

. The semi-

analytical results allude to the complexity of how 

the solitons individually or mutually interact. In the 

absence of field, the two co-propagating solitons can 

attract, repulse or can propagate independently 

taking their initial delay into account. Whereas in 
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the presence of phase-modulated perturbation, the 

interaction of the two solitons may result in 

breathing, merging, annihilation, or two-soliton 

state, all depending on frequency and pump power. 

In addition, Ablowitz M J et al. studied the 

perturbations of dark solitons in nonlinear 

Schrödinger equation
20

. The problem was divided in 

two regions; inner region where the core of solitons 

exists, and outer region which evolves 

independently of the soliton. Their findings reported 

that a shelf around the soliton set in and propagated 

with speed governed by the background intensity. 

They also provided analysis for the background by 

considering both constant and slow evolution of 

which.  

Conclusion: In this paper, an NLSE equation with 

inhomogeneity and quasiperiodicity terms has been 

discussed. Firstly, the spatiotemporal evolution of 

localised bright and dark solitons has been obtained 

by solutions to the NLSE which accounted for the 

homogeneous case. Then the soliton wave 

progressions have been studied for inhomogeneous 

terms a embedded in the system, which 

demonstrated that the wave intensity got higher as 

time went by for a = 0.012. In the presence of 

uniformly distributed noise with random seed and 

zero mean, the system markedly developed robust 

soliton waves with manifestly noisy peaks triggered 

in the background. Further, the system has been 

subject to an external applied perturbation with 

quasiperiodic frequencies. For          and 

    , solution to the INSLE yielded two solitons 

emanating from a rippling background. As a 

ramification to applying a Gaussian pulse wave at 

input, a pronounced and localised soliton with 

clearly ordered pattern has been generated for the 

same frequencies of the field. Upon reducing the 

frequency    to 0.03, the soliton developed 

background waves with notably increased intensity. 

In addition, the soliton-filed interaction for 

frequencies                (golden number) 

and      of incommensurate ratio has been 

considered to check the impact on the dynamics of 

the obtained solitons. The latter had demonstrated 

that the main soliton became less prominent with 

background waves intensifying for the same 

Gaussian pulse applied to system. Finally, to study 

the impact of the nonuniformity parameter a on the 

soliton evolution, a higher value has been adopted 

(= 0.03) with frequencies    ,    0.056 and 0.03 

respectively, which led to generating notably 

breather waves. The role of the system parameters 

which can be controlled has been addressed, in 

addition to the quasiperiodic perturbation field with 

emphasis on the contribution of incommensurability 

of frequencies on the soliton evolution and stability. 
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Figure 1. Optical Peregrine soliton wave resulting from solution to the NLSE. 
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Fig 2 (c) 

 

Figure 2. Localised bright and dark solitons of NLSE for the nonuniformity parameter a = 0: (a) temporal 

evolution snapshots, (b) 3D-plot of the localised solitons and (c) 2D-projected view showing the bright and 

dark soliton peaks with rippling background. 

   

                  

Figure 3. Soliton waves progression for inhomogeneity terms present in the NLSE, a = 0.012. From (a) to (d) 

the wave amplitude gets higher by time with soliton developing weak wave packet background. 
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Figure 4. Robust rogue soliton wave for a = 0.012 in presence of uniformly distributed noise with random 

seed and zero mean. Noise amplitude is equal to 1, 2 and 7 for (a), (b) and (c) respectively with manifestly 

noisy background starting to prevail for (c). 

       
Figure 5. Soliton evolution under quasiperiodic perturbation for a = 0.012. (a) Two solitons generated under 

field frequencies          and      (b) 2D-top view plot of the emanating waves.  
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Figure 6. (a) Evolution of a pronounced localised soliton produced from solution to the INLSE for input 

Gaussian pulse wave at x0 = 0 under applied field f(t) (b) 2D-view of the localised soliton wave. 

 

Figure 7. Effect of changing frequency on soliton wave (a) soliton interaction with field for lower frequency 

        developing background waves with increasing intensity (b) Surface view of soliton wave in (a). 

   

Figure 8. Soliton-field interaction for frequencies    and    are equal to 1.618033988 (golden number) and 

1, respectively. (a) Main soliton becoming less prominent with background waves intensifying (b) Surface 

plot of soliton interacting with external perturbation. 
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Figure 9. Influence of the nonuniformity parameter a as ‘control’ on the soliton dynamics (a) Breather waves 

evolution resulting for changing a to 0.03, field frequencies depicted on picture (b) Surface plot of breather 

solitons. 


